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Abstract: Little is known about the large-scale evolution-

ary patterns of skull size relative to body size, and the pos-

sible drivers behind these patterns, in Archosauromorpha.

For example, the large skulls of erythrosuchids, a group of

non-archosaurian archosauromorphs from the Early and

Middle Triassic, and of theropod dinosaurs are regarded as

convergent adaptations for hypercarnivory. However, few

investigations have explicitly tested whether erythrosuchid

and theropod skulls are indeed disproportionately large for

their body size, and whether this trend is driven by hyper-

carnivory. Here, we investigate archosauromorph relative

skull size evolution, examining the scaling relationships

between skull and body size of Palaeozoic and Mesozoic

archosauromorphs using a robust phylogenetic framework

and assessing the influence of potential drivers, such as tax-

onomy, diet, locomotory mode and inhabited biotope. Our

results show that archosauromorph relative skull sizes are

largely determined by phylogeny and that the other drivers

have much weaker levels of influence. We find negative

allometric scaling of skull size with respect to body size

when all studied archosauromorphs are analysed. Within

specific groups, skull size scales with positive allometry in

non-archosaurian archosauromorphs and, interestingly,

scales isometrically in theropods. Ancestral reconstructions

of skull–femur size ratio reveal a disproportionately large

skull at the base of Erythrosuchidae and proportionately

sized skulls at the bases of Theropoda, Carnosauria and

Tyrannosauroidea. Relative skull sizes of erythrosuchids and

theropods are therefore distinct from each other, indicating

that disproportionately large skulls are not a prerequisite

for hypercarnivory in archosauromorphs, and that erythro-

suchids exhibit a bauplan unique among terrestrial Meso-

zoic carnivores.

Key words: relative skull size, Archosauromorpha, hyper-

carnivory, biotope, phylogeny, allometry.

THE vertebrate head is a remarkable anatomical structure

with a diverse array of functions. These include but are

not limited to: feeding; housing and protecting the brain;

sensing and interpreting external cues; display; and intra-

and inter-specific aggression (Stephens et al. 2007; Open-

shaw & Keogh 2014; VanBuren et al. 2015; da Silva et al.

2018; Arbour et al. 2019). Head phenotypes are therefore

the outcome of numerous selective pressures (Bright et al.

2016). Currently, our understanding of whether selective

pressures have additive, interactive or constraining effects

on head phenotypes is still incomplete (Watanabe et al.

2019; Felice et al. 2021). For example, skull size relative

to the rest of the body is often hypothesized to be influ-

enced by diet; disproportionately larger skulls showing

positive allometric scaling are suggested as an adaptation

for hypercarnivory in many lineages (Figueirido et al.

2010; Butler et al. 2019; Galatius et al. 2020). However,

such hypotheses often fail to account for other drivers

that may concurrently influence skull size. Characterizing

phenotypic changes such as relative skull size over evolu-

tionary time within a rigorous phylogenetic context, as

well as understanding the role of potential drivers (e.g.

diet, inhabited biotope and mode of locomotion) are cru-

cial for understanding the origins and radiations of past
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and present biodiversity (VanBuren et al. 2015; Benson

et al. 2018).

Archosauromorpha represents an excellent group for

studying large-scale evolutionary patterns and possible

drivers of relative skull size. This highly successful clade

includes archosaurs (dinosaurs, birds, pterosaurs and croc-

odilians) and their close relatives, and is represented today

by over 10 000 bird and around 27 crocodilian species

(Brusatte et al. 2010a; Nesbitt 2011; Grigg & Kirshner

2015; Ezcurra & Butler 2018; Ezcurra et al. 2020a). Archo-

sauromorphs evolved in the middle–late Permian and rap-

idly diversified in the wake of the Permo-Triassic mass

extinction to dominate terrestrial ecosystems for almost the

entirety of the Mesozoic (Benton 2004; Langer et al. 2010;

Nesbitt 2011; Foth et al. 2016a, 2021; Ezcurra & Butler

2018). Lineages from this clade have also repeatedly radi-

ated into other biotopes, with pterosaurs and birds (and

possibly a few non-avian theropod maniraptoran dino-

saurs) independently evolving active flight (Rayner 1988;

Pei et al. 2020) and members of groups such as Crocodylo-

morpha, Phytosauria, Tanystropheidae and Proterosuchi-

dae evolving semi or fully aquatic lifestyles (Stocker et al.

2017; Wilberg et al. 2019; Ezcurra et al. 2020b). In addi-

tion, today most major archosauromorph clades have well-

resolved phylogenies that enable macroevolutionary inves-

tigations within robust phylogenetic frameworks (e.g.

Ezcurra 2016; Benson et al. 2018; Godoy et al. 2019;

O’Brien et al. 2019; Pradelli et al. 2021).

One pattern of particular interest concerns the repeated

occupation of terrestrial hypercarnivorous niches (a diet

comprising more than 70% meat; Holliday & Steppan

2004), by distantly related archosauromorphs throughout

the Mesozoic. This niche is thought to have been occu-

pied in the Early and Middle Triassic by erythrosuchids, a

non-archosaurian archosauromorph clade of quadrupeds

characterized by large skulls with a subrectangular profile

(e.g. Butler et al. 2019; Ezcurra et al. 2020b, 2021; Maid-

ment et al. 2020). Middle and Late Triassic hypercarni-

vorous niches are thought to have been filled by non-

crocodylomorph loricatans (pseudosuchian archosaurs

traditionally referred to as ‘rauisuchians’ sensu Nesbitt &

Desojo 2017) which probably assumed both quadrupedal

and bipedal postures (e.g. Prestosuchus chinquensis and

Postosuchus kirkpatricki respectively; Chatterjee 1985;

Weinbaum 2011, 2013; Mastrantonio et al. 2019; Desojo

et al. 2020a). Multiple groups of theropod dinosaurs are

regarded as the apex predators of Jurassic and Cretaceous

food webs, such as megalosaurids in the former period

and abelisaurids and tyrannosaurids in the latter (Ther-

rien & Henderson 2007; Brusatte et al. 2012; Novas et al.

2013; Hendrickx & Mateus 2014). The large skulls exhib-

ited by these archosauromorph groups are therefore

deemed to be convergent adaptations for hypercarnivory

(Chatterjee 1985; Nesbitt et al. 2013; Butler et al. 2019;

Ezcurra et al. 2021). However, the hypothesis that their

skulls are indeed disproportionately large with respect to

body size, and are also convergent with each other, has

currently received little explicit testing (Therrien & Hen-

derson 2007; Butler et al. 2019).

In this study, we investigate relative skull sizes of Palaeo-

zoic and Mesozoic archosauromorphs to: (1) understand

the influence of potential drivers (taxonomy, diet, locomo-

tion and biotope) on relative skull size; (2) understand scal-

ing relationships between skull and body size according to

these potential drivers; and (3) reconstruct relative skull

size evolution across Archosauromorpha. We achieve these

aims using a robust phylogenetic framework that includes

the construction of a novel informal supertree that is inde-

pendently time-scaled using two distinct methods. This

also enables better identification of whether relative skull

size evolution, at both higher-level and more exclusive

clades, is constant and directional, or indicates evolutionary

radiations (i.e. increase in morphological diversity at the

base of major clades) followed by stasis. Our study repre-

sents the first comprehensive investigation of large-scale

patterns of skull size evolution across the Palaeozoic and

Mesozoic in archosauromorphs.

MATERIAL AND METHOD

Skull and body size data collection

We collected data on basal skull length (anterior tip of

the premaxilla to the posterior tip of the quadrate) and

femur length across Palaeozoic and Mesozoic archosauro-

morphs. Skull length was our chosen proxy for skull size

due to the ease of data collection on account of not rely-

ing on homologous landmarks between distantly related

taxa, and due to its previous use in investigating cranial

morphological disparity in extant archosaurs (Erickson

et al. 2012; Foth et al. 2015; Shatkovska & Ghazali 2021).

Femoral length was our chosen proxy for overall body

size because while femur circumference scales more

closely with body mass (Campione & Evans 2012; Cam-

pione et al. 2014; Maidment et al. 2020), femur length is

also a reliable proxy for body mass that has been used

extensively, is much easier to measure, and is much more

widely reported than femur circumference in the litera-

ture (Carrano 2006; Sookias et al. 2012; Turner & Nesbitt

2013; VanBuren et al. 2015; Butler et al. 2019). Data were

collected for a total of 223 species of archosauromorphs,

81 of which were drawn from Butler et al. (2019; and ref-

erences therein). We added data from personal observa-

tions and the literature for a further 142 species,

including non-archosaurian archosauromorphs, pseudosu-

chians, dinosaurs and pterosaurs. The characteristic

parietosquamosal frills of ceratopsian dinosaurs
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(e.g. Triceratops horridus) were not included in skull

length measurements, in order to allow representative

comparisons with non-ceratopsians (VanBuren et al.

2015). All data were log-transformed prior to analysis.

For each species, skull and femur data were acquired

from a single individual in order to provide a representa-

tive ratio. This specimen was the largest best-preserved

individual of that taxon to minimize any confounding

effects from ontogeny, because ontogenetic trajectories of

cranial shape from several groups of extant and extinct

archosaurs (such as crocodilians and dinosaurs respec-

tively) show crania generally become more elongate with

increasing ontogenetic stage (Foth et al. 2016b; Morris

et al. 2019; Lee et al. 2020; Fabbri et al. 2021). The rela-

tive ontogenetic stage was considered for all study speci-

mens, either from prior assessments where data were

obtained from the literature, or by morphological assess-

ments where data were collected from personal observa-

tions, including the size and degree of bone and sutural

fusion. Specimens assessed as potential hatchlings or juve-

niles were not sampled. The full list of studied archosaur-

omorphs, including skull and femur measurements and

data sources, can be found in Table S1.

Building the archosauromorph supertree

To explore our data in a robust phylogenetic framework,

we created an informal supertree for all sampled archo-

sauromorphs. The supertree comprises 1307 species-level

taxa and was built using the topology used by Butler

et al. (2019; and references therein) with input from: a

modified version of Ezcurra (2016) for non-archosaurian

archosauromorphs and non-crocodylomorph pseudosu-

chians; Ezcurra et al. (2020a) for non-pterosaur ptero-

sauromorphs; Godoy et al. (2019) for crocodylomorphs;

Andres et al. (2014) and Longrich et al. (2018) for Ptero-

sauria; Raven & Maidment (2017) for Stegosauria; Rivera-

Sylva et al. (2018) for Ankylosauria; Williamson & Bru-

satte (2016) for Pachycephalosauria; VanBuren et al.

(2015) for Ceratopsia; Xing & Xing (2014) and McDo-

nald et al. (2017) for Ornithopoda; Cashmore et al.

(2020; and references therein) for Sauropodomorpha; Pol

& Rauhut (2012) and Wang et al. (2017) for Cerato-

sauria; Rauhut & Pol (2019) for Carnosauria; Delcourt &

Grillo (2018) for Tyrannosauroidea; Lee et al. (2014a) for

Ornithomimosauria; Hartman et al. (2019) for Therizino-

sauria; Xu et al. (2010) for Alvarezsauroidea; Lamanna

et al. (2014) and Funston et al. (2018) for Oviraptoro-

sauria and; Pei et al. (2020) for Paraves. The complete

tree can be found in Appendix S1. Stratigraphic ages for

species were taken either from the literature or from the

Paleobiology Database (https://paleobiodb.org) and can

be found in Table S2. The supertree was time-scaled

using two different approaches to facilitate robust investi-

gations into relative skull size evolution. We used the

minimum branch length (mbl) method (Laurin 2004)

with the minimum branch duration set at 1 myr (hereaf-

ter mbl.1) and the cal3 method (Bapst 2013). The two

time-scaling approaches were applied using functions

timePaleoPhy and cal3TimePaleoPhy from the package

paleotree (Bapst 2012) in R version 4.1.0 (R Core Team

2018). For the cal3 method, the sampling rate was ran-

domly drawn from a uniform distribution of previously

estimated rates for tetrapods (Lloyd et al. 2016; Bapst &

Hopkins 2017), whereas diversification and extinction

rates (which we assume here to be the same) were

obtained using the function Rate2sProb and dividing them

by the interval length. Prior to time-scaling, we randomly

resolved all polytomies in the supertree generating 20 dif-

ferent fully resolved trees, which, after time-scaling,

resulted in 40 time-scaled trees (20 for each time-scaling

approach). Analyses were performed using pruned ver-

sions of the mbl.1 and cal3 trees that included only archo-

sauromorphs for which we had collected skull and body

size data. Example code used to perform all analyses in R

can be found in Appendix S2.

Phylogenetic signal and potential drivers of skull size

evolution

We tested for the presence of a phylogenetic signal in the

ratio of skull length to femur length using the phyloSignal

function of the package phylosignal (Keck et al. 2016),

setting 999 999 replicates for each tree. We used Pagel’s

lambda (k) as our index for testing phylogenetic signal as

it is relatively robust when using trees with poorly

resolved branch length information (M€unkem€uller et al.

2012; Molina-Venegas & Rodr�ıguez 2017).

We applied regression models to examine the relation-

ship between skull length and femur length in all archo-

sauromorphs, and to investigate the effects of different

drivers on this relationship. To take the phylogenetic rela-

tionships of taxa into account, we used phylogenetic gen-

eralized least squares (PGLS) regressions with the gls

function from the package nlme (Pinheiro et al. 2018).

We selected four predictors for our models: (1) taxon-

omy; (2) dietary group; (3) locomotory mode; and (4)

inhabited biotope.

For taxonomy, archosauromorphs were assigned to one

of the following clades or grades, some of which are modi-

fied from their formal phylogenetic definitions for easier

between-group comparisons: (1) Avialae, the clade contain-

ing Passer domesticus and all coelurosaurian dinosaurs more

closely related to it than to Dromaeosaurus albertensis and

Troodon formosus (Turner et al. 2012); anchiornithines are

included in this clade following Pei et al. (2020); (2) ‘basal
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archosauromorphs’, a paraphyletic group that comprises all

non-archosaurian archosauromorphs (including tanystrop-

heids, rhynchosaurs, proterosuchids, erythrosuchids and

proterochampsians; Ezcurra et al. 2020b), all non-

crocodylomorph pseudosuchians (including phytosaurs,

gracilisuchids, aetosaurs, ornithosuchids, erpetosuchids,

poposauroids and non-crocodylomorph loricatans; Brusatte

et al. 2010a; Nesbitt et al. 2013; Ezcurra 2016; M€uller et al.

2020) and all non-dinosaurian and non-pterosaurian aveme-

tatarsalians (e.g. Scleromochlus taylori); (3) Ceratopsia, the

clade comprising all marginocephalian dinosaurs that are

more closely related to Triceratops horridus than to Pachyce-

phalosaurus wyomingensis (You & Dodson 2004);

(4) Crocodylomorpha, the most inclusive clade containing

Crocodylus niloticus but not Rauisuchus tiradentes, Gracilisu-

chus stipanicicorum, Prestosuchus chiniquensis or Aetosaurus

ferratus (Nesbitt 2011; Irmis et al. 2013); (5) Dinosauria, the

clade comprising the most recent common ancestor of Tri-

ceratops horridus and Passer domesticus and all its descen-

dants (Brusatte et al. 2010b); Mesozoic avialans, however,

are excluded from this category since their bauplans are

adapted for flight; (6) basal Ornithischia, a paraphyletic

group including all ornithischians that are not included

within Ceratopsia, Ornithopoda or Thyreophora (e.g. Het-

erodontosaurus tucki); (7) Ornithopoda, the clade compris-

ing all dinosaurs that are more closely related to

Edmontosaurus regalis than to Triceratops horridus (Norman

et al. 2004a); (8) Pterosauria, the clade comprising the most

recent common ancestor of Preondactylus buffarinii and

Quetzalcoatlus northropi and all its descendants (Nesbitt

2011); (9) Sauropodomorpha, the clade comprising all

dinosaurs that are more closely related to Saltasaurus lorica-

tus than to Passer domesticus (Galton & Upchurch 2004);

(10) Theropoda, the largest clade containing Allosaurus fra-

gilis but neither Plateosaurus engelhardti nor Heterodonto-

saurus tucki (Naish et al. 2020); members of Herrerasauria,

all dinosaurs that share a more recent common ancestor

with Herrerasaurus ischigualastensis than with Liliensternus

liliensterni or Plateosaurus engelhardti (Langer 2004), are

here included within Theropoda for simplicity despite grow-

ing evidence that this clade may represent non-theropod

saurischians (Novas et al. 2021; and references therein); as

with our Dinosauria clade, avialans are excluded from Ther-

opoda here to rule out confounding effects from their highly

derived bauplans; and (11) Thyreophora, the clade compris-

ing all dinosaurs that are more closely related to Ankylosau-

rus magniventris than to Triceratops horridus (Norman et al.

2004b). Regression models were also performed on Archo-

sauromorpha and Dinosauria with sauropodomorphs

excluded to explore whether these dinosaurs had dispropor-

tionate effects on regression slopes due to their characteristi-

cally small skulls (Sander et al. 2010; Rauhut et al. 2011).

For diet, archosauromorphs were categorized as either

carnivores or herbivores. This dichotomy is a simplification

of the range of likely ecologies exhibited by extinct taxa but

is necessary because of the difficulty in reliably assigning

specific ecologies based on dietary proxies (see Bestwick

et al. (2018) and Miller & Pittman (2021) for recent

reviews) and allows straightforward analyses. For biotope,

archosauromorphs were categorized as either terrestrial,

aquatic (including semi-aquatic lifestyles) or aerial. For

locomotion, archosauromorphs were categorized as either

obligate bipeds, obligate quadrupeds, facultative biped-

quadrupeds or bipedal-flying. All assignments for diet,

locomotion and biotope were based on the common con-

sensus of the literature and of the authors. We note that

our aerial biotope and biped-flying categories have the

same assigned taxa: avialans and pterosaurs and a few the-

ropods (complete category assignments for all archosauro-

morphs can be found in Table S1).

A total of 15 models were used in our approach,

including a no predictor model, single predictor models,

and a model for a two, three and four-way combination

of predictors. Each of the 15 models was fitted to all 40

trees. We initially performed a stepwise removal model to

remove all non-significant interaction terms from our

multi-predictor models. This resulted in all interaction

terms being removed (i.e. all predictors were analysed as

additive fixed factors). We compared the mean average

and median AIC scores from each model to assess how

well they explained our data.

Subsequent PGLS regressions were performed on each

subset of the archosauromorph dataset according to taxon-

omy, diet, locomotory mode and biotope. To test the addi-

tional hypothesis that hypercarnivory is a driver behind

large relative skull sizes, PGLS was also performed on ter-

restrial basal archosauromorph carnivores and terrestrial

dinosaur carnivores. The non-crocodylomorph loricatans

Prestosuchus chinquensis and Postosuchus kirkpatricki were

included as part of the former carnivore subset due to the

lack of sampled taxa from this group of Middle–Late Trias-
sic predatory archosauromorphs. This, however, still

enables comparisons between Triassic carnivores and Juras-

sic and Cretaceous carnivores. To reduce computational

demands, all ‘subset PGLS regressions’ were performed

using just one randomly chosen tree from each time-

scaling approach (i.e. one mbl.1 tree and one cal3 tree).

Relative skull size evolution

To investigate relative skull size evolution in Archosaur-

omorpha, one randomly chosen tree from each time-

scaling approach was pruned in R to include only

archosauromorphs with sampled skull length and femur

length data. Pruning has no effect on the topological

relationships of remaining archosauromorphs. Ancestral

reconstructions of log skull-length/log femur-length ratio
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(henceforth: skull–femur ratio) were subsequently mapped

onto each of the pruned supertrees. Maximum likelihood

estimations were achieved using the contMap function in

phytools (Revell 2012). In addition, to help determine

whether ratio changes through evolutionary time are con-

tinuous or are better explained by evolutionary radiations

(i.e. most significant shifts associated with the origin of

major clades), we calculated ancestral skull–femur ratios

along with variance and upper and lower 95% confidence

intervals for 16 specific nodes (the same for each tree),

using the anc.ML function in phytools. These nodes repre-

sent ratio estimates for the most recent common ancestor

of a particular clade. For consistency with our PGLS and

scaling analyses, nodes were selected to represent the fol-

lowing clades: Avialae, Ceratopsia, Crocodylomorpha,

Dinosauria, basal Ornithischia, Ornithopoda, Pterosauria,

Sauropodomorpha, Theropoda and Thyreophora. The tax-

onomic contents of these groups were not modified for this

analysis. To further aid in identifying evolutionary changes

we selected additional nodes that represented the following

clades: Archosauromorpha (all saurians more closely to

Protorosaurus than to Lepidosauria; Dilkes 1998), Archo-

sauria (the least inclusive clade containing Crocodylus nilo-

ticus and Passer domesticus; Sereno 2005), Avemetatarsalia

(the most inclusive clade containing Passer domesticus but

not Crocodylus niloticus; Benton 1999), and Pseudosuchia

(the most inclusive clade containing Crocodylus niloticus

but not Passer domesticus; Sereno 2005). We also selected

nodes that represented Erythrosuchidae (all taxa more

closely related to Erythrosuchus africanus than to Proterosu-

chus fergusi or Passer domesticus; Ezcurra et al. 2010), Lori-

cata (the most inclusive clade containing Crocodylus

niloticus but not Poposaurus gracilis, Ornithosuchus longi-

dens or Aetosaurus ferratus; Nesbitt 2011), Abelisauroidea

(theropod dinosaurs more closely related to Carnotaurus

sastrei than to Ceratosaurus nasicornis; Tykoski & Rowe

2004), Carnosauria (theropod dinosaurs more closely

related to Allosaurus fragilis and to Megalosaurus bucklandii

than to Passer domesticus; Rauhut & Pol 2019) and Tyran-

nosauroidea (all theropod dinosaurs more closely related to

Tyrannosaurus rex than to Ornithomimus velox, Deinony-

chus antirrhopus or Allosaurus fragilis; Holtz 2004) to

understand skull size evolution in unrelated apex predators

from across the Mesozoic, and how they compare with each

other.

RESULTS

Phylogenetic signal and performance of predictor models

Across the full dataset of 223 archosauromorphs, there is

a strongly significant phylogenetic signal in the skull–
femur ratio for all time-calibrated trees (all k > 0.84;

p < 0.0001). Phylogenetic signal results for all 40 time-

calibrated trees can be found in Table S3.

Comparisons between the AIC scores for all 15 predic-

tor models fitted to archosauromorph skull–femur lengths

generally show similar levels of support (Fig. 1; AIC

scores for all 40 trees from all predictor models can be

found in Table S4). All models except one exhibit mean

average AIC scores between 1.2 and �40.98 and median

scores between �24.18 and �69.96 (Fig. 1; Table S4).

The exception is the biotope model which shows the

weakest level of support (i.e. higher AIC values; mean

77.7, median 53.1; Fig. 1). The ‘taxonomy + diet + loco-

motory mode’ model shows marginally the strongest level

of support (mean �40.98, median �69.67; Fig. 1;

Table S4). Method of time-calibration appears to have lit-

tle effect on AIC scores for each model. Hereafter, only

results from one randomly chosen tree from each time-

scaling approach from the no predictor model are

presented.

PGLS scaling relationships

For all studied archosauromorphs, skull length statistically

significantly correlates with femur length for both time-

scaled trees (p < 0.0001; Fig. 2). When slopes are consid-

ered, skull length scales with negative allometry with

respect to femur length (a = 0.81 � 0.077 and

0.809 � 0.088 for the mbl.1 and cal3 trees, respectively;

Fig. 2; Table 1). Archosauromorph skulls therefore

become disproportionately smaller with increasing body

size (see Table S5 for full PGLS results). When archosaur-

omorphs are categorized into subsets according to taxo-

nomic group, we find that skull length is strongly

correlated with femur lengths in all groups except in basal

Ornithischia (p = 0.461 and 0.421 for the mbl.1 and cal3

ornithischian trees, respectively; Table 1), probably due to

its small sample size (n = 6). When slopes are considered,

skull length scales with positive allometry in basal archo-

sauromorphs for both time-scaling methods (Table 1).

Skull length scales with negative allometry for both time-

scaling methods in ceratopsians, dinosaurs and sauropo-

domorphs (Table 1). Avialan skull length scales with neg-

ative allometry in the cal3 tree, but scales with isometry

in the mbl.1 tree (Table 1). Skull length scales isometri-

cally with femur length in both time-calibrated trees in

crocodylomorphs, ornithopods, pterosaurs, theropods and

thyreophorans (Table 1; see Fig. S1 for regression lines

and 95% confidence intervals for each taxonomic group;

also see Fig. S2 for regression lines and 95% confidence

intervals for all predictor subsets that show different scal-

ing relationships between the mbl.1 and cal3 trees). In the

Archosauromorpha and Dinosauria with excluded sauro-

podomorphs subsets, skull lengths scale with negative
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allometry in both time-calibrated trees (Table 1; Fig. S3;

Table S5).

When categorized by diet, skull length is strongly cor-

related with femur length in both archosauromorph car-

nivores and herbivores for both time-calibrated trees

(Fig. 3; Table 2). Carnivore skull lengths scale isometri-

cally with respect to femur length for both time-scaled

trees, while herbivore skull lengths scale with negative

allometry (Fig. 3; Table 2). When categorized by loco-

motory mode, skull length is strongly correlated with

femur length for all locomotory modes for both time-

scaling methods (Table 3; see Fig. S4 for regression lines

and 95% confidence intervals for each locomotory

mode). Skull length scales with negative allometry for

both time-calibrated trees in bipedal archosauromorphs

and scales isometrically in biped-flying and quadrupedal

archosauromorphs (Table 3). In facultatively quadrupe-

dal archosaurs, skull length scales with negative allome-

try using the mbl.1 tree but scales isometrically using

the cal3 tree (Table 3). When assigned by biotope, skull

length is strongly correlated with femur length for all

three biotopes from both time-calibrated trees (Table 4;

see Fig. S5 for regression lines and 95% confidence

intervals for each biotope). From both time-calibrated

trees, skull length scales isometrically in aerial archosaur-

omorphs, with positive allometry in aquatic

archosauromorphs, and with negative allometry in ter-

restrial archosauromorphs (Table 4; Fig. S4). Both terres-

trial basal archosauromorph carnivores and terrestrial

dinosaur carnivores exhibit statistically significant rela-

tionships between skull and femur lengths (Fig. 4;

Table 5). Skull length scales isometrically with femur

length from both time-calibrated trees in dinosaurs,

while in basal archosauromorphs, skull length scales iso-

metrically with femur length from the mbl.1 tree, but

scales with positive allometry from the cal3 tree (Fig. 4;

Table 5).

Ancestral skull–femur ratio estimates

The skull–femur ratio ancestral state estimates using the

two time-calibrated trees show broadly similar estimated

ratios across most archosauromorph lineages and for spe-

cific nodes of interest (Fig. 5; Table 6; see Table S6 for

ancestral estimates, variance, and upper and lower 95%

intervals for all nodes highlighted in Fig. 5, and for the

complete ancestral estimate list of all 222 nodes from the

two time-calibrated trees; see Fig. S6 for the locations of

all 222 nodes within the two trees). The ancestral estimate

of Archosauromorpha (node 1, Fig. 5) from the mbl.1

tree indicates a skull equal in length to that of the femur

F IG . 1 . Boxplots showing AIC scores of the predictor models fitted to archosauromorph phylogeny and log skull-length/log femur-

length data using 40 randomly resolved, time-calibrated trees, 20 calibrated with the mbl.1 method and 20 with the cal3 method.

Abbreviations: T, taxonomy; D, diet; B, biotope; L, locomotory mode. Additive effects between predictors were modelled in all multi-

predictor models (see text for further information). Box plot colours are for aesthetic purposes only. AIC scores of all models from

each time-calibrated tree can be found in Table S4.
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F IG . 2 . Phylogenetic generalized least squares (PGLS) regression of log skull-length and log femur-length for 223 extinct archosauro-

morph species (grey solid line). Taxonomic clades and grades that comprise the dataset are highlighted. Star symbols denote erythrosu-

chids. Dashed grey lines denote 95% confidence intervals (CIs). Regression line and CIs from the analysis that used the mbl.1 time-

scaled phylogeny. Taxa located above the regression line have disproportionately larger skulls and taxa located below the regression line

have disproportionately smaller skulls. The theoretical isometric line (a = 1) is denoted by the dashed black line. PGLS results of all

archosauromorphs from all 40 time-calibrated trees, as well as regression results of each taxonomic clade and grade from the mbl.1

and cal3 tree, can be found in Table S5.

TABLE 1 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for all studied

archosauromorphs and for assigned taxonomic groups within Archosauromorpha.

mbl.1 cal3

Taxonomic group df Slope 95% CI p Slope 95% CI p

All archosauromorphs 222 0.81 0.077 <0.0001 0.809 0.088 <0.0001
Avialae 11 0.735 0.284 0.0002 0.622 0.267 0.0004

Basal archosauromorphs 36 1.193 0.147 <0.0001 1.209 0.145 <0.0001
Ceratopsia 24 0.85 0.147 <0.0001 0.801 0.107 <0.0001
Crocodylomorpha 23 1.075 0.153 <0.0001 1.112 0.16 <0.0001
Dinosauria 116 0.761 0.114 <0.0001 0.679 0.1 <0.0001
Basal Ornithischia 5 0.424 1.445 0.461 0.401 1.245 0.421

Ornithopoda 16 0.894 0.242 <0.0001 0.92 0.267 <0.0001
Pterosauria 32 0.993 0.184 <0.0001 0.926 0.273 <0.0001
Sauropodomorpha 18 0.753 0.23 <0.0001 0.774 0.191 <0.0001
Theropoda 33 0.758 0.311 <0.0001 0.81 0.294 <0.0001
Thyreophora 15 1.242 0.414 <0.0001 1.32 0.519 <0.0001
Archosauromorpha without Sauropodomorpha 203 0.791 0.127 <0.0001 0.771 0.087 <0.0001
Dinosauria without Sauropodomorpha 97 0.817 0.129 <0.0001 0.837 0.138 <0.0001

Includes regression results using the mbl.1 and cal3 time-calibrated trees and 95% confidence interval (CI) range for each tree. See text

for how each taxonomic group was defined in this study. Full results for each PGLS can be found in Table S5.
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(1.033 � 0.059), whereas the estimate from the cal3 tree

indicates a slightly longer skull (1.056 � 0.05; Table 6).

The ancestral mbl.1 and cal3 estimates for Erythrosuchi-

dae (node 2) in contrast clearly show a disproportionately

larger skull (Fig. 5; Table 6). The ancestral estimates for

the most recent common ancestor of Archosauria

(node 3) denotes a skull only very slightly longer than

the femur, but while the same trend is observed in the

most recent common ancestor of Pseudosuchia

(node 17), the ancestral estimate for the most recent

common ancestor of Avemetatarsalia (node 4) shows a

skull and femur of equal length (Table 6). Ancestral esti-

mates for the two major avemetatarsalian clades, Ptero-

sauria and Dinosauria (nodes 5 and 6 respectively), show

a strongly disproportionately large skull for the former

and a skull and femur of equal length in the latter

(Table 6). The ancestral estimate for Ornithischia

(node 7, Fig. 5) from the mbl.1 tree indicates a dispro-

portionately short skull (albeit marginally), while the cal3

tree indicates a skull equal in length to the femur.

F IG . 3 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for 233 extinct arch-

osauromorph species assigned as either carnivores (violet solid line) or herbivores (turquoise solid line). Star symbols denote erythro-

suchids. Dashed lines indicate 95% confidence intervals (CIs) for the corresponding diet. Regression lines and CIs from the analysis

that used the mbl.1 time-scaled phylogeny. Taxa located above the regression lines have disproportionately larger skulls and taxa

located below the regression lines have disproportionately smaller skulls. The theoretical isometric line (a = 1) is denoted by the

dashed black line.

TABLE 2 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for all studied

archosauromorphs assigned to a dietary group.

mbl.1 cal3

Diet df Slope 95% CI p Slope 95% CI p

Carnivores 123 1.05 0.094 <0.0001 1.082 0.1 <0.0001
Herbivores 98 0.777 0.083 <0.0001 0.718 0.08 <0.0001

Includes regression results using the mbl.1 and cal3 time-calibrated trees and 95% confidence interval (CI) range for each tree. See text

for how each dietary group was defined in this study. Full results for each PGLS can be found in Table S5.
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TABLE 3 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for all studied

archosauromorphs assigned to a locomotory mode.

mbl.1 cal3

Locomotory mode df Slope 95% CI p Slope 95% CI p

Bipedal 56 0.786 0.199 <0.0001 0.781 0.176 <0.0001
Bipedal-quadrupedal 21 0.725 0.273 <0.0001 0.862 0.182 <0.0001
Bipedal-flying 45 0.832 0.182 <0.0001 0.832 0.294 <0.0001
Quadrupedal 97 1 0.096 <0.0001 1.059 0.105 <0.0001

Includes regression results using the mbl.1 and cal3 time-calibrated trees and 95% confidence interval (CI) range for each tree. See text

for how each locomotory mode was defined in this study. Full results for each PGLS can be found in Table S5.

TABLE 4 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for all studied

archosauromorphs assigned to an inhabited biotope.

mbl.1 cal3

Biotope df Slope 95% CI p Slope 95% CI p

Aerial 45 0.832 0.182 <0.0001 0.84 0.289 <0.0001
Aquatic 26 1.213 0.15 <0.0001 1.222 0.129 <0.0001
Terrestrial 149 0.87 0.097 <0.0001 0.853 0.094 <0.0001

Includes regression results using the mbl.1 and cal3 time-calibrated trees and 95% confidence interval (CI) range for each tree. See text

for how each biotope was defined in this study. Full results for each PGLS can be found in Table S5.

F IG . 4 . PGLS results of log skull-length and log femur-length for terrestrial basal archosauromorph carnivores (orange solid line)

and terrestrial dinosaur carnivores (blue solid line). Star symbols denote erythrosuchids. Dashed lines indicate 95% confidence intervals

(CIs) for the corresponding category. Regression lines and CIs from the analysis that used the mbl.1 time-scaled phylogeny. Taxa

located above the regression lines have disproportionately larger skulls and taxa located below the regression lines have disproportion-

ately smaller skulls. Non-applicable archosauromorphs are greyed out for easier comparison. The theoretical isometric line (a = 1) is

denoted by the dashed black line.
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Ancestral estimates for several major dinosaurian clades,

including the most recent common ancestors of Ceratop-

sia, Ornithopoda, Sauropodomorpha and Theropoda

(nodes 9–12 respectively), indicate skulls and femora of

equal length (Fig. 5; Table 6), which then exhibit steady

directional changes in skull–femur ratio through evolu-

tionary time. For example, the sauropodomorph ratio

becomes smaller through time, while the ceratopsian ratio

becomes slightly larger (Fig. 5). Multiple independent

shifts towards disproportionately shorter or longer skulls

are optimized in Theropoda and in Avialae (nodes 12

and 16 respectively; Fig. 5). For example, the ancestral

estimates for Abelisauroidea (node 13; Fig. 5; Table 6)

indicate skulls and femora of equal length with multiple

lineages independently evolving disproportionately smaller

skulls. In contrast, ancestral estimates of Carnosauria and

Tyrannosauroidea (nodes 14 and 15 respectively) indicate

skulls and femora of equal length (Table 6) with little

change exhibited by subsequent lineages and taxa (Fig. 5).

The ancestral ratio estimate for Thyreophora (node 8)

indicates a disproportionately short skull (Table 6), and

the ratio in this clade exhibits little change through evo-

lutionary time (Fig. 5). Interestingly, the ancestral esti-

mates for Loricata and Crocodylomorpha (nodes 18 and

19 respectively) indicate skulls and femora of equal length

(Table 6), with multiple lineages within the latter clade

subsequently evolving disproportionately longer skulls

(Fig. 5).

DISCUSSION

Scaling relationships and drivers of relative skull size

Our results indicate that skull–femur ratios across Archo-

sauromorpha are largely determined by phylogeny and

indicate no clear support for any of our predictor models

as an explanation behind the observed patterns. However,

the biotope model provides a relatively poorer explana-

tion for skull–femur ratios than other models. Multiple,

unrelated selection pressures could explain the weak sup-

port for our predictor models, since multiple pressures

acting on anatomical structures that perform multiple

roles can result in morphologies that are not optimally

adapted for a single role (Gould & Lewontin 1979; Fisher

1985; Ferry-Graham et al. 2002). Nevertheless, our results

can still be discussed in ecological and evolutionary

contexts.

Our scaling relationships are only slightly influenced by

time-scaling method, thus our results from the two time-

scaled trees can be discussed together. Relative skull size

scaling with negative allometry for all studied archosauro-

morphs considered together contrasts with similar studies

of extant mammalian clades. For example, skull sizes of

multiple groups of marsupials (Macropodidae) and pla-

centals (Chiroptera, Primates, Rodentia, Ungulata) scale

isometrically with respect to body size (Cardini & Polly

2013; Cardini et al. 2015; Cardini 2019), while skull sizes

TABLE 5 . Phylogenetic generalized least squares (PGLS) regression results of log skull-length and log femur-length for terrestrial

basal archosauromorph carnivores and terrestrial dinosaur carnivores.

mbl.1 cal3

Category df Slope 95% CI p Slope 95% CI p

Basal archosauromorphs 19 1.149 0.154 <0.0001 1.244 0.178 <0.0001
Dinosaurs 32 0.784 0.341 <0.0001 0.804 0.369 <0.0001

Includes regression results using the mbl.1 and cal3 time-calibrated trees. Includes 95% confidence interval (CI) range. Full results for

each PGLS can be found in Table S5.

F IG . 5 . Ancestral character-state reconstruction of log skull-length/log femur-length ratio evolution for 223 archosauromorphs from

mapping ratios onto time-calibrated supertrees. A, reconstruction using the mbl.1 dating method. B, reconstruction using the cal3 dat-

ing method. Tree number [1] from the 20 randomly resolved pruned supertrees from each dating method are shown here. Highlighted

nodes: 1, Archosauromorpha; 2, Erythrosuchidae; 3, Archosauria; 4, Avemetatarsalia; 5, Pterosauria; 6, Dinosauria; 7, Ornithischia;

8, Thyreophora; 9, Ceratopsia; 10, Ornithopoda; 11, Sauropodomorpha; 12, Theropoda; 13, Abelisauroidea; 14, Carnosauria;

15, Tyrannosauroidea; 16, Avialae; 17, Pseudosuchia; 18, Loricata; 19, Crocodylomorpha. Reconstructed values of the highlighted

nodes, along with the variance and upper and lower 95% confidences intervals, can be found in Table S6. Silhouettes not to scale and

adapted from http://www.phylopic.org/ under a Creative Commons Attribution NonCommerical ShareAlike 3.0 Unported license

(https://creativecommons.org/licenses/by-nc-sa/3.0/) except where stated. Anticlockwise from ‘non-archosaurian archosauromorphs’:

Erythrosuchus africanus, Emilio Lopez-Rolandi; Preondactylus buffarinii, Mark Witton; Heterodontosaurus tucki, Scott Hartman; Stego-

saurus stenops, Andrew Farke; Triceratops porosus, no copyright; Iguanodon bernissartensis, Jamie Headden; Barosaurus lentus, Scott

Hartman; Tyrannosaurus rex, Scott Hartman; Archaeopteryx lithographica, no copyright; Postosuchus kirkpatricki, no copyright; Torvo-

neustes carpenter, Dmitry Bogdanov and T. Michael Keesey.
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of other placentals (Carnivora, Cetacea) scale with posi-

tive allometry (Slater & Van Valkenburgh 2009; Tamag-

nini et al. 2017; Law et al. 2018). Skull sizes also scale

with positive allometry in a few unrelated extant avian

lineages, although these relationships are less clear (Bright

et al. 2016; Linde-Medina 2016; Tokita et al. 2016). Our

results therefore indicate that relative skull size relation-

ships may not be universal between major groups of dis-

tantly related amniotes and that focusing on scaling

relationships of data subsets may enable identification of

more informative patterns.

With regard to taxonomic subsets, it is unsurprising that

basal archosauromorph skulls scale with positive allometry,

given that several distinct groups, including erythosuchids,

proterochampsids, proterosuchids and phytosaurs are fre-

quently cited as having disproportionately large skulls (e.g.

Stocker & Butler 2013; Butler et al. 2019; Ezcurra et al.

2020b). There is also emerging evidence of disproportion-

ately large skulls in basal aetosaurs (e.g. Revueltosaurus call-

enderi; Parker et al. 2021). However, this study provides

some of the first quantitative evidence that the skulls of

these lineages are indeed disproportionately larger for their

size in comparison to other archosauromorphs (Butler

et al. 2019). Since all our studied basal archosauromorphs

are from the Triassic, this allometric relationship highlights

the uniqueness of not only Triassic archosauromorphs but

Triassic ecosystems in general.

A more surprising result perhaps, given the huge

morphological disparity exhibited by the clade, is the

number of archosaurian groups that exhibit isometric

scaling of skull length with respect to femur length. For

example, the relationship in non-avialan theropods con-

trasts with that found by Therrien & Henderson (2007),

in which skull lengths scaled with positive allometry

with respect to body length. However, that study used a

considerably smaller sample size in terms of both num-

ber of species and number of represented theropod sub-

clades. Due to the nature of the fossil record, over half

of our theropod sample were coelurosaurs; those species

more closely related to Passer domesticus than to Allo-

saurus fragilis (sensu Turner et al. 2012). Coelurosaurian

theropods exhibit rapid and sustained morphological

changes moving crownward towards Avialae, such as

miniaturization (the main exceptions being tyrannosaur-

oids and ornithomimosaurs), truncation of the snout

and modifications of the limb bones, which are all likely

to have influenced relative skull size (Bhullar et al. 2012;

Benson & Choiniere 2013; Dececchi & Larsson 2013;

Brusatte et al. 2014; Lee et al. 2014b, 2020; Puttick et al.

2014; Foth et al. 2016b; Nebreda et al. 2021). This larger

coverage of taxa potentially explains the difference

between our results and those of Therrien & Henderson

(2007), and highlights the importance of thorough spe-

cies sampling.

TABLE 6 . Estimated ancestral archosauromorph log skull-length/log femur-length ratios, and 95% confidence interval (CI) range, for

selected nodes from the mbl.1 and cal3 time-calibrated trees.

Node no. Node label

mbl.1 ancestral

ratio estimate �95% CI

cal3 ancestral

ratio estimate �95% CI

1 Archosauromorpha 1.033 0.059 1.056 0.050

2 Erythrosuchidae 1.146 0.027 1.163 0.002

3 Archosauria 1.043 0.040 1.064 0.032

4 Avemetatarsalia 1.036 0.042 1.049 0.049

5 Pterosauria 1.174 0.051 1.154 0.083

6 Dinosauria 1.000 0.046 0.994 0.060

7 Ornithischia 0.953 0.043 0.961 0.052

8 Thyreophora 0.941 0.038 0.943 0.042

9 Ceratopsia 0.994 0.210 1.006 0.012

10 Ornithopoda 0.963 0.043 0.992 0.063

11 Sauropodomorpha 0.984 0.046 0.964 0.410

12 Theropoda 0.998 0.052 0.970 0.042

13 Abelisauroidea 0.960 0.060 0.943 0.122

14 Carnosauria 0.969 0.063 0.982 0.115

15 Tyrannosauroidea 0.982 0.053 0.991 0.072

16 Avialae 0.974 0.037 0.985 0.046

17 Pseudosuchia 1.046 0.042 1.064 0.032

18 Loricata 1.038 0.050 1.050 0.050

19 Crocodylomorpha 1.024 0.049 1.031 0.087

Node numbers correspond to those indicated in Figure 5. Full ancestral estimate reconstructions can be found in Table S6. All values

to 3 d.p.
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Another surprising result is the isometric scaling found

for Crocodylomorpha. The Mesozoic witnessed the high-

est morphological and ecological diversity of crocodylo-

morphs, particularly in the Jurassic and Cretaceous,

including: small cursorial forms; specialized herbivores;

semi-aquatic and fully marine piscivores and carnivores;

and terrestrial apex predators (Young et al. 2010; Stubbs

et al. 2013; }Osi 2014; Melstrom & Irmis 2019; Wilberg

et al. 2019; Montefeltro et al. 2020). A range of skull

morphologies is thereby exhibited by Mesozoic crocodylo-

morphs, from the short stubby rostra of notosuchians

such as Simosuchus clarki to the gracile elongate rostra of

thalattosuchians such as Cricosaurus suevicus (Felice et al.

2021; Stubbs et al. 2021). It is therefore possible that

these morphological extremes effectively balance the over-

all trend and that greater focus on specific crocodylo-

morph lineages may reveal further interesting patterns.

Focusing on specific ornithischian lineages reveals

interesting patterns, namely negative allometric scaling in

ceratopsians, while ornithopods and thyreophorans scale

isometrically. Our ceratopsian relationship contrasts with

previous research that found ceratopsian skulls to scale

isometrically (VanBuren et al. 2015). As both studies have

very similar ceratopsian samples, these differences could

be due to the choice of time-scaling methods. For exam-

ple, both studies used the mbl method and our mbl.1 tree

produced a slope with confidence intervals only just out-

side the theoretical slope of isometry. Our cal3 tree, a

method not used by VanBuren et al. (2015), in contrast

produced a slope with a much lower gradient. Neverthe-

less, these results are still worth mentioning within evolu-

tionary and ecological contexts. It is likely that the

negative scaling relationship is being driven by the

appearance of disproportionately large skulls very early in

ceratopsian evolutionary history, such as Psittacosaurus

major and Psittacosaurus sinensis, although the exact rea-

sons behind this are unclear (Ostrom 1966; Sereno et al.

2007; VanBuren et al. 2015).

With regard to the dietary subsets, carnivores exhibit-

ing proportionally larger skulls than herbivores is unsur-

prising as larger skulls have more jaw muscle attachment

sites for higher bite forces, are capable of wider gapes,

and have greater resistance to biomechanical stress and

strain, all of which aid in the capture and killing of prey

(Slater & Van Valkenburgh 2009; Fabre et al. 2016;

McCurry et al. 2017; Galatius et al. 2020). In contrast,

consumption of fibrous and tough plant material often

correlates with modified postcranial structures that enable

effective digestion including, but not exclusive to, elon-

gate intestinal tracts, gastric mills and increased trunk size

(Barrett 2014; and references therein). However, the iso-

metric scaling of carnivore skull size contrasts with several

groups of mammalian carnivores that exhibit positive

allometric scaling of skull size with respect to both body

size and the size of preferred prey (e.g. carnivorans and

cetaceans; Slater & Van Valkenburgh 2009; Tamagnini

et al. 2017; Galatius et al. 2020; but see Law et al. 2018).

Isometric scaling could be explained by the scaling rela-

tionships of our terrestrial carnivore subsets. The isomet-

ric dinosaur carnivore scaling relationship may have been

influenced by the relative lack of spinosaurids and carch-

arodontosaurids (lineages that are regarded as hypercarni-

vorous and which show evidence of proportionately large

skulls; Sereno et al. 1998; Sues et al. 2002; Novas et al.

2013) due to incomplete preservation. Carnivores that

probably filled mesopredator niches (such as dromaeo-

saurids and troodontids; Wick et al. 2015) would have

experienced lower selection pressure for larger skulls,

occurred in greater numbers, and may therefore have

lowered the slope gradient (Tamagnini et al. 2017; Gala-

tius et al. 2020). Nevertheless, we include taxa from these

hypothesized hypercarnivorous lineages where preserva-

tion allowed, as well as other lineages of large theropods

such as tyrannosaurs and ceratosaurs (Benson et al.

2018). In addition, recent evidence that suggests a semi-

aquatic lifestyle for some spinosaurids (Ibrahim et al.

2020), potentially excluding them from this terrestrial

subset. We therefore regard our terrestrial dinosaur carni-

vore sampling range and the resulting slope to be repre-

sentative despite the limitations of the fossil record.

Locomotory mode may also help to explain scaling

similarities and differences between archosauromorph car-

nivores and mammalian carnivores. For example, the vast

majority of theropods are bipedal and therefore have a

centre of mass located around the hips allowing the ani-

mal to maintain balance (Henderson 1999; Maidment

et al. 2014). Theoretical modelling has shown that even

small morphological changes to the skulls and/or fore-

limbs of bipedal dinosaurs can move the centre of mass

anteriorly, resulting in a top-heavy animal (Maidment

et al. 2014; Barrett & Maidment 2017). Bipedality there-

fore probably imposes stronger constraints on skull size

than quadrupedality. This is further exemplified by the

quadrupedal erythrosuchids (Erythrosuchus africanus, Gar-

jainia prima and Shansisuchus shansisuchus), which not

only have the most disproportionately large skulls among

terrestrial archosauromorph carnivores, but also among

all terrestrial taxa in this study. In contrast, the two non-

crocodylomorph loricatans Postosuchus and Prestosuchus

have relative skull sizes more similar to those of hypercar-

nivorous theropods than to erythrosuchids. In fact,

hypothesized Triassic mesopredators such as ornithosu-

chids (von Baczko 2018) exhibit proportionately longer

skulls than the aforementioned loricatans (although lori-

catan skulls are alternatively much deeper; Chatterjee

1985; Weinbaum 2011; Mastrantonio et al. 2019). These

scaling relationships between basal archosauromorphs and

dinosaurs, and their skull–femur length ratios, indicate
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that disproportionately large skulls are not a prerequisite

for hypercarnivory and further highlights the morphologi-

cal uniqueness of erythrosuchids.

With regard to the biotope subsets, different scaling

relationships between our subsets are broadly similar to

morphological studies of extant and extinct squamate

skulls that found that mode of life (terrestrial, fossorial,

semi-aquatic etc.) was a strong driver of skull shape and

size (Fabre et al. 2016; da Silva et al. 2018). It is likely

that the negative allometry seen in the scaling of terres-

trial archosauromorph skulls is driven by the dispropor-

tionately small skulls of sauropodomorphs and

thyreophorans (Christiansen 1999). Isometric scaling of

aerial archosauromorph skulls is consistent with a similar

pattern observed in extant bats (Chiroptera; Cardini &

Polly 2013). Powered flight has independently evolved in

archosauromorphs at least twice (at the base of Ptero-

sauria and near the base of Avialae), and possibly even

three or more times (at least once within Deinonycho-

sauria, such as in Microraptor zhaoianus; Pei et al. 2020),

with each clade exhibiting marked modifications and

reductions of skeletal elements for balance and flight effi-

ciency (Bell et al. 2011; Benson et al. 2014, 2018; Lee

et al. 2014b; Tokita 2015; Witton 2015). For example, the

hind limbs of pterosaurs and bats are directly connected

to the forelimbs via the brachypatagium and are thus part

of the flight apparatus, while avialan hind limbs are not

involved in flight and can move independently of the

forelimbs (Tokita 2015). It is therefore interesting that

morphological adaptations for flight do not change skull

scaling relationships from the ancestral state, not just in

archosauromorphs, but in all aerial amniotes.

Disproportionately large skulls and positive allometric

scaling in unrelated aquatic archosauromorphs can be

explained by ecomorphological convergence. Extant croc-

odilians are all semi-aquatic and also exhibit dispropor-

tionately large skulls (VanBuren et al. 2015; Butler et al.

2019). This seems to be the result of some degree of cra-

nial elongation driven by heterochronic modifications in

craniofacial ontogeny that facilitated seizing prey via uni-

lateral biting motions (Erickson et al. 2012; Walmsley

et al. 2013; McCurry et al. 2015; Morris et al. 2019; Lee

et al. 2020), and by reduced limb sizes since elongated

neural spines of the caudal vertebrae enable swimming

via axial muscle-derived propulsion (Pol et al. 2012;

Grigg & Kirshner 2015; Molnar et al. 2015; Henderson

2018). Shifts from terrestrial to semi or fully aquatic life-

styles in extinct archosauromorphs have occurred at least

once in each of the following clades: Tanystropheidae,

Proterosuchidae; Proterochampsia; Phytosauria; and Cro-

codylomorpha (Ezcurra 2016; Wilberg et al. 2019; Brown

et al. 2020; Ezcurra et al. 2020b). In most cases (not tany-

stropheids and at least some non-proterochampsid pro-

terochampsians) these lineages exhibit some level of

convergence with crocodilians and with each other,

resulting in disproportionately large skulls (Stocker &

Butler 2013; Trotteyn et al. 2013; Wynd et al. 2019;

Brown et al. 2020; Ezcurra et al. 2020b; Felice et al. 2021;

Stubbs et al. 2021). Selection for larger skull–femur ratios

would also be greater in semi-aquatic taxa as they are

more likely to spend time in water, in which smaller

limbs and larger axial muscles, to reduce drag and com-

bat locomotion-induced stresses, respectively, would be

more advantageous (Biewener 2005; Montgomery et al.

2013; Molnar et al. 2015).

Relative skull size evolution

The isometric, or near-isometric, ancestral skull–femur

ratio estimates for the majority of our higher-level clades

(i.e. above family level) indicates that minimal changes in

relative skull size occur prior to the origin of a clade and

that greater changes occur soon after the clade has

appeared. This indicates that deviations of the ancestral

skull–femur ratio probably happened once phylogenetic

diversifications occurred, during a phase of ecomorpholo-

gical expansion. For example, the isometric estimate for

the ancestral sauropodomorph is quickly followed by a

conspicuous ratio decrease in the lineage that includes all

sauropodomorphs except for its two earliest-diverging

members, Buriolestes schultzi and Eoraptor lunensis. This is

consistent with developmental timing shifts and bauplan

changes that began to occur around this time such as: the

shortening and anterior rotation of cranial bones associ-

ated with the braincase (e.g. jugal); increasing trunk size;

elongation of the neck and development of columnar

limbs (Christiansen 1999; Sander et al. 2010; Rauhut

et al. 2011; Sookias et al. 2012; Turner & Nesbitt 2013;

Barrett & Maidment 2017; Fabbri et al. 2021; Pradelli

et al. 2021). These changes are likely to have co-evolved

with dietary shifts to bulk herbivory as sauropodomorphs

became among the dominant herbivores of the latest Tri-

assic and Early Jurassic (Christiansen 1999; Sander et al.

2010; Rauhut et al. 2011; Fabbri et al. 2021).

However, this is perhaps not the case for clades where

multiple taxa and lineages exhibit independent changes in

relative skull size. In pterosaurs for example, the abrupt

decrease and almost immediate subsequent increase in

relative skull size around the centre of the pterosaur tree

is probably influenced by anurognathids; a family from

the Middle–Upper Jurassic characterized by very small

wingspans (<1 m) and short, box-like skulls (Bennett

2007; Bestwick et al. 2018). This morphology is hypothe-

sized as an adaptation for a unique lifestyle among ptero-

saurs, that is, catching insects on the wing with their

mouths open (Bestwick et al. 2018; and references

therein). However, the influence of topological
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uncertainties cannot be ruled out as other phylogenies

recover anurognathids as one of the earliest branching

groups (e.g. L€u et al. 2010; Rodrigues et al. 2015), which

is likely to minimize these abrupt increase and decrease

events due to a longer anurognathid ghost lineage. The

repeated evolution of disproportionately large skulls in

pterosaurs, particularly in derived lineages, could be due

to multiple non-mutually exclusive selection pressures

including less reliance on terrestrial locomotion as flight

becomes more efficient, thereby reducing the size of the

hind limbs (Witton & Habib 2010; Venditti et al. 2020),

and the occupation of new niches as early-diverging line-

ages were small and most likely insectivorous while more

deeply nested lineages became carnivores and piscivores

(Bestwick et al. 2020). These patterns reflect the huge dis-

parity in pterosaur relative skull sizes and may indicate

fewer phylogenetic constraints from these flying reptiles

relative to other archosauromorphs.

The multiple, independent skull–femur ratio decreases in

theropods (including avialans) similarly indicate unappre-

ciated patterns in body plan evolution. It is tempting to

suggest that these decreases denote dietary shifts towards

facultative or obligate herbivory such as in ornithomimo-

saurs and oviraptorosaurs (Barrett 2014). However, this is

unlikely to be the sole explanation for two main reasons:

(1) there is limited evidence that herbivory is a major driver

in altering theropod skull and body sizes (Zanno & Mako-

vicky 2013; Button & Zanno 2020); and (2) there are large

theropods in our dataset (total body length >6 m) that

show quantitative evidence of carnivory and have dispro-

portionately short, yet deep, skulls, such as the abelisaurids

Carnotaurus sastrei and Skorpiovenator bustingorryi (Bona-

parte et al. 1990; Canale et al. 2009; Mazetta et al. 2009).

Furthermore, our results show limited evidence of relative

skull size increases in supposed hypercarnivorous lineages

such as tyrannosauroids. These patterns suggest that hyper-

carnivory and herbivory are not necessary prerequisites for

disproportionately large and small skulls, respectively, in

theropods. Incorporating other skull size proxies in future

investigations, such as skull depth, may help corroborate

this emerging view.

Similar patterns in other non-theropod carnivores also

cast doubt on the necessity for disproportionately large

skulls. For example, the decrease in skull–femur ratio esti-

mates between the slightly disproportionately large skull of

the ancestral pseudosuchian and the subequal skull and

femur lengths of the ancestral loricatan and crocodylo-

morph (Table S6) is contrary to what would be expected

from a lineage containing a paraphyletic assemblage of

hypothesized apex predators such as Prestosuchus and Post-

osuchus (Chatterjee 1985; Nesbitt 2011; Nesbitt et al. 2013;

Desojo et al. 2020a). In contrast, the ancestral Erythrosu-

chidae ratio estimate (Table S6) indicates that dispropor-

tionately large skulls are probably a synapomorphic trait

for this clade (Ezcurra et al. 2013; Butler et al. 2019; Maid-

ment et al. 2020). It can therefore be argued that the skull–
femur ratios of carnivorous early loricatans are more like

those of carnivorous theropods, such as tyrannosaurids,

than those of erythrosuchids and that the erythrosuchid

bauplan is morphologically unique among terrestrial arch-

osauromorph carnivores with respect to their hugely dis-

proportionately large skulls, short neck and

quadrupedality. Further investigations into relative skull

size convergence between distantly related archosauro-

morph carnivores, or even between archosauromorph and

mammalian carnivores, could use non-uniform evolution-

ary models such as SURFACE as they do not require a

priori assumptions on where regime shifts are located in the

phylogeny (Ingram & Mahler 2013; Godoy et al. 2019).

It is worth noting that some of our skull–femur ratio

estimates could be affected by limitations of the fossil

record. For example, the high Pterosauria ancestral esti-

mates are probably influenced by the absence of non-

pterosaurian pterosauromorphs in our dataset due to

their extremely rare and poorly preserved nature, with the

earliest-known pterosaurs from the late Norian already

exhibiting a highly modified bauplan capable of active

flight (Dalla Vecchia 2013; Dean et al. 2016; Britt et al.

2018; Ezcurra et al. 2020a). The absence of earlier ptero-

sauromorphs may thereby artificially affect the ancestral

Pterosauria estimate. Similarly, the fossil record of early

ornithischians from the Triassic and Early Jurassic is very

poor or even null (Irmis et al. 2007; Baron 2017; but see

Desojo et al. 2020b), which in our dataset creates a ghost

lineage of approximately 35–40 myr from the base of

Dinosauria to the earliest included ornithischian. This

long ghost lineage is likely to have caused the ratio esti-

mate differences between our two time-scaled trees. There

is some published evidence that silesaurids, traditionally

viewed as the sister group to Dinosauria, may actually be

a paraphyletic assemblage of Triassic ornithischians that

would greatly reduce the length of this ghost lineage

(Cabreira et al. 2016; M€uller & Garcia 2020). However,

the lack of preservation of complete skulls also prevented

their inclusion here. New, well-preserved fossil material

and greater resolution of phylogenetic relationships will

further improve the robustness of future studies.

CONCLUSION

Relative skull size in archosauromorphs is strongly phylo-

genetically structured, with diet, locomotory mode and

biotope found as much weaker drivers of the observed scal-

ing trends. Most significant changes in relative skull size

occur soon after the origin of most terrestrial archosauro-

morph clades, which is indicative of an ecomorphological

expansion (or evolutionary radiation) followed by relative
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stasis. In addition, this study provides some of the first

quantitative evidence that the skulls of erythrosuchid arch-

osauriforms are disproportionately large for their body size

and that this trend is distinct from the proportionately

sized skulls of theropod dinosaurs and non-

crocodylomorph loricatans. Furthermore, the dispropor-

tionately large skulls of erythrosuchids were unique not just

among terrestrial carnivores, but among all terrestrial arch-

osauromorphs. Our study therefore indicates that dispro-

portionately large skulls are not a prerequisite for

hypercarnivory in archosauromorphs and that Early and

early Middle Triassic ecosystems were even more ecomor-

phologically diverse than previously thought.
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Additional Supporting Information can be found online (https://

doi.org/10.1111/pala.12599):

Fig. S1. PGLS results of log skull-length and log femur-length
for each extinct archosauromorph taxonomic group used in this

study. A, Avialae; B, basal archosauromorphs; C, Ceratopsia;

D, Crocodylomorpha; E, Dinosauria; F, basal Ornithischia;

G, Ornithopoda; H, Pterosauria; I, Sauropodmorpha; J, Theropoda;

K, Thyreophora. Avialans are not included in the Dinosauria and

Theropoda panels. Star symbols denote erythrosuchids. Dashed lines

denote 95% confidence intervals (CIs). Regression lines and CIs

from the analysis that used the mbl.1 time-scaled phylogeny. The

theoretical isometric line (a = 1) is denoted by the dashed black line

in each panel. Non-applicable archosauromorphs in each panel are

greyed out. Taxonomic assignments for all archosauromorphs can be

found in Table S1.

Fig. S2. PGLS results of log skull–length and log femur–
length for each assigned archosauromorph category that pro-

duced different scaling relationships after using the mbl.1 and

cal3 time-scaled phylogenies. A, avialans; B, bipedal-quadruped

archosauromorphs; C, terrestrial basal archosauromorph carni-

vores. In all panels the cal3 regression line is denoted by a green

solid line and the mbl.1 regression lines in panels A–C are

denoted by a blue, yellow and orange solid line respectively.

Dashed lines denote 95% confidence intervals (CIs). The theo-

retical isometric line (a = 1) is denoted by the dashed black line

in each panel. Non-applicable archosauromorphs in each panel

are greyed out. PGLS regression results can be found in

Table S5.

Fig. S3. PGLS results of log skull–length and log femur–
length for: A, Archosauromorpha; B, Dinosauria that include

and exclude sauropodomorphs. In both panels the sauropodo-

morph-excluded regression line is denoted by a scarlet solid line

and the sauropodomorph-included regression lines in panels A

and B are denoted by a grey and blue solid line respectively.

Dashed lines denote 95% confidence intervals (CIs). The theo-

retical isometric line (a = 1) is denoted by the dashed black line

in each panel. Non-applicable archosauromorphs in each panel

are greyed out. PGLS regression results can be found in

Table S5.

Fig. S4. PGLS results of log skull–length and log femur–
length for each assigned locomotory mode of extinct archosaur-

omorphs. A, bipedal; B, bipedal-flying; C, bipedal-quadruped;

D, quadrupedal. Dashed lines denote 95% confidence intervals

(CIs). Regression lines and CIs from the analysis that used the

mbl.1 time-scaled phylogeny. The theoretical isometric line

(a = 1) is shown as a dashed black line in each panel. Non-

applicable archosauromorphs in each panel are greyed out.

Locomotory assignments for all archosauromorphs can be found

in Table S1.

Fig. S5. PGLS results of log skull–length and log femur–
length for each assigned biotope of extinct archosauromorphs.

A, aerial; B, aquatic; C, terrestrial. Dashed lines denote 95%

confidence intervals (CIs). Regression lines and CIs from the

analysis that used the mbl.1 time-scaled phylogeny. The theoreti-

cal isometric line (a = 1) is denoted by the dashed black line in

each panel. Non-applicable archosauromorphs in each panel are

greyed out. Biotope assignments for all archosauromorphs can

be found in Table S1.

Fig. S6. Ancestral character-state reconstructions of log skull–
length/log femur–length ratio evolution for 223 archosauro-

morphs from mapping ratios onto time-calibrated supertrees

with label numbers of all 222 nodes. A, reconstruction using the

mbl.1 dating method. B, reconstruction using the cal3 dating

method. Ancestral node estimates, along with the variance and

upper and lower 95% confidence intervals for both trees can be

found in Table S6.

Table S1. Skull and femur length data of studied archosauro-

morphs with taxonomy, diet, locomotion and biotope

assignments.
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Table S2. First and last appearance data (in millions of years)

of archosauromorphs used to time-scale the supertree used in

our analyses.

Table S3. Phylogenetic signal results, using Pagel’s lambda, of

archosauromorph log skull-length/log femur-length ratio from

the 40 randomly resolved, time-calibrated trees used for the

model fitting analysis.

Table S4. Phylogenetic generalized least squares regression

and predictor model fitting results of all 15 predictor models on

archosauromorph log skull-length and log femur-length from 40

randomly resolved, time-calibrated trees.

Table S5. Phylogenetic generalized least squares regression

results of archosauromorph log skull-length and log femur-

length from subsets according to: taxonomic group; diet; loco-

motory mode; biotope; terrestrial basal archosauromorph carni-

vores and terrestrial dinosaur carnivores.

Table S6. Estimated ancestral archosauromorph log skull-

length/log femur-length ratios for selected nodes from the mbl.1

and cal3 time-calibrated trees.

Appendix S1. Nexus file for undated archosauromorph tree.

Appendix S2. Example R code.

Appendix S3. cal3 trees (taxa dropped, 20 trees).

Appendix S4. mbl.1 trees (taxa dropped, 20 trees).
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